Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Jesús Valdés-Martínez, ${ }^{\text {a* }}$ Simón Hernández-Ortega, ${ }^{\text {a }}$ Douglas $\mathbf{X}$. West, ${ }^{\text {b }}$ Ayman K. El-Sawaf, ${ }^{\text {b }}$ Ramadan M. El-Bahanasawy ${ }^{\mathrm{c}}$ and Fathy A. El-Saied ${ }^{\text {c }}$
${ }^{\text {a }}$ Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, Cd. México, DF, Mexico, ${ }^{\text {b }}$ Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA, and ${ }^{\text {c }}$ Department of Chemistry, El-Menoufia University, Shebin El-Kom, Egypt

Correspondence e-mail:
jvaldes@servidor.unam.mx

## Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
Disorder in solvent or counterion
$R$ factor $=0.043$
$w R$ factor $=0.109$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## mer-Bis(2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrazole-4-carbaldehyde 4,4-dimethylthio-semicarbazonato- $\left.\kappa^{3} S, N, O\right)$ cobalt(III) tetrafluoroborate

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{OS}\right)_{2}\right] \mathrm{BF}_{4}$, the cation has a distorted octahedral geometry around the $\mathrm{Co}^{\text {III }}$ atom, with two 2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro- 1 H -pyrazole-4carbaldehyde 4,4-dimethylthiosemicarbazonate anions coordinated as meridional tridentate ligands through the thiolate S , the antipyrine O and the imine N atoms. A tetrafluoroborate anion balances the charge of the $\mathrm{Co}^{\mathrm{III}}$ complex.

## Comment

The continuing interest in the chemistry of thiosemicarbazones and their metal complexes is mainly due to their interesting coordination chemistry and significant biological activity (Doron et al., 2004; Belicchi-Ferrari et al., 2005). Similarly, antipyrine (2,3-dimethyl-1-phenylpyrazol-5one) and its derivatives possess a wide variety of biological activity. We have reported the preparation and characterization through elemental analysis, physical and spectral studies, of coordination compounds of $\mathrm{Fe}^{\mathrm{III}}, \mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{III}}$ with 4-formylantipyrine $N(4)$-methyl-, $N(4)$-dimethy- and 3-piperidylthiosemicarbazones (El-Sawaf et al., 1998). In this paper, we report the crystal structure of the $\mathrm{Co}^{\mathrm{III}}$ complex, (I), with 2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro- 1 H -pyrazole-4carbaldehyde 4,4-dimethylthiosemicarbazone.


The structure of (I) is shown in Fig. 1 and selected bond lengths and angles are listed in Table 1. The geometry around the $\mathrm{Co}^{\text {III }}$ ion is distorted octahedral, with two thiosemicarbazonate ligands coordinated in a meridional fashion, acting as tridentate through the thiolate S , the antipyrine O and the imine N atoms. The phenyl rings in both ligands deviate from the mean plane of the remaining heavy atoms, by $70.6(2)^{\circ}$ for the $\mathrm{C} 12-\mathrm{C} 17$ ring and by $70.2(2)^{\circ}$ for the C27C 32 ring. The F atoms from the tetrafluoroborate anion are disordered over two positions, with occupancies of 0.53 (2) and 0.47 (2), respectively.

Received 7 July 2005 Accepted 13 July 2005 Online 20 July 2005

The cobalt complexes reported with the 2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1 H -pyrazole-4-carbaldehyde 4,4-dimethylthiosemicarbazone ligand in our earlier paper (ElSawaf et al., 1998) were high-spin octahedral $\mathrm{Co}^{\mathrm{II}}$ complexes. The present result indicates that, during crystalization, the $\mathrm{Co}^{\mathrm{II}}$ salt was oxidized to the $\mathrm{Co}^{\mathrm{III}}$ salt, as has been reported to happen with thiosemicarbazone complexes of $\mathrm{Co}^{\text {II }}$ with poorly coordinating anions such as $\mathrm{BF}_{4}^{-}$(Maichle et al., 1995).

## Experimental

The title compound was obtained as reported elsewhere (El-Sawaf et al., 1998).

## Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{OS}\right)_{2}\right] \mathrm{BF}_{4}$
$M_{r}=778.55$
Monoclinic, $P 2_{1} / c$
$a=15.1182$ (10) $\AA$
$b=14.0027$ (9) $\AA$
$c=17.3551$ (12) $\AA$
$\beta=107.173(2)^{\circ}$
$V=3510.2(4) \AA^{3}$
$Z=4$
$D_{x}=1.473 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5009 reflections
$\theta=2.4-31.3^{\circ}$
$\mu=0.67 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Prism, black
$0.36 \times 0.22 \times 0.18 \mathrm{~mm}$

## Data collection

Bruker SMART APEX AXS CCD
area-detector diffractometer

## $\omega$ scans

Absorption correction: none
28284 measured reflections
6188 independent reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.109$
$S=0.94$
6188 reflections
456 parameters

4433 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-17 \rightarrow 17$
$k=-16 \rightarrow 16$
$l=-20 \rightarrow 20$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.06 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.027$
$\Delta \rho_{\max }=0.46 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ( $\left(\AA{ }^{\circ}\right)$.

| Co1-N8 | $1.921(2)$ | $\mathrm{O} 2-\mathrm{C} 18$ | $1.259(3)$ |
| :--- | :--- | :--- | ---: |
| $\mathrm{Co} 1-\mathrm{N} 3$ | $1.922(2)$ | $\mathrm{N} 3-\mathrm{C} 6$ | $1.288(3)$ |
| Co1-O1 | $1.9938(19)$ | $\mathrm{N} 3-\mathrm{N} 4$ | $1.395(3)$ |
| Co1-O2 | $1.995(2)$ | $\mathrm{N} 4-\mathrm{C} 7$ | $1.299(4)$ |
| $\mathrm{Co} 1-\mathrm{S} 2$ | $2.1934(8)$ | $\mathrm{N} 5-\mathrm{C} 7$ | $1.365(4)$ |
| $\mathrm{Co} 1-\mathrm{S} 1$ | $2.1937(8)$ | $\mathrm{N} 8-\mathrm{C} 21$ | $1.291(3)$ |
| $\mathrm{S} 1-\mathrm{C} 7$ | $1.750(3)$ | $\mathrm{N} 8-\mathrm{N} 9$ | $1.391(3)$ |
| S2-C22 | $1.746(3)$ | $\mathrm{N} 9-\mathrm{C} 22$ | $1.306(3)$ |
| $\mathrm{O} 1-\mathrm{C} 3$ | $1.258(3)$ | $\mathrm{N} 10-\mathrm{C} 22$ | $1.357(4)$ |
|  |  |  |  |
| N8-Co1-N3 | $174.52(10)$ | $\mathrm{N} 3-\mathrm{Co} 1-\mathrm{S} 1$ | $86.43(7)$ |
| N8-Co1-O1 | $86.20(8)$ | $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{S} 1$ | $174.77(6)$ |
| N3-Co1-O1 | $97.44(9)$ | $\mathrm{O} 2-\mathrm{Co} 1-\mathrm{S} 1$ | $91.05(6)$ |
| N8-Co1-O2 | $97.60(9)$ | $\mathrm{S} 2-\mathrm{Co} 1-\mathrm{S} 1$ | $92.17(3)$ |
| N3-Co1-O2 | $86.80(9)$ | $\mathrm{C} 7-\mathrm{S} 1-\mathrm{Co} 1$ | $95.47(10)$ |
| $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2$ | $85.66(9)$ | $\mathrm{C} 22-\mathrm{S} 2-\mathrm{C} 1$ | $95.72(10)$ |
| N8-Co1-S2 | $86.36(7)$ | $\mathrm{C} 3-\mathrm{O} 1-\mathrm{Co} 1$ | $117.76(18)$ |
| N3-Co1-S2 | $89.43(7)$ | $\mathrm{C} 18-\mathrm{O} 2-\mathrm{Co} 1$ | $118.03(19)$ |
| $\mathrm{O} 1-\mathrm{Co} 1-\mathrm{S} 2$ | $91.40(7)$ | $\mathrm{O} 1-\mathrm{C} 3-\mathrm{N} 2$ | $122.2(3)$ |
| $\mathrm{O} 2-\mathrm{Co} 1-\mathrm{S} 2$ | $174.88(6)$ | $\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$ | $131.1(3)$ |
| N8-Co1-S1 | $90.21(7)$ |  |  |



View of the molecule of (I). Displacement ellipsoids are drawn at the $50 \%$ probability level.

H atoms were located in a difference Fourier map and refined as riding $\left[\mathrm{C}-\mathrm{H}=0.93\right.$ or $0.96 \AA$; $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINTPlus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: enCIFer (Allen et al., 2004).

The authors acknowledge UNAM and CONACYT 40332-Q for partial support of this research.

## References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Belicchi-Ferrari, M., Bisceglie, F., Casoli, C., Durot, S., Morgenstern-Badarau, I., Pelosi, G., Pilotti, E., Pinelli, S. \& Tarasconi, P. (2005). J. Med. Chem. 48, 1671-1675.
Bruker (1999). SMART (Version 5.625) and SAINT-Plus (Version 6.23C). Bruker AXS Inc., Madison, Wisconsin, USA.
Doron, C., Greenbaum, D., Mackey, Z., Hansell, E., Doyle, P., Gut, J., Caffrey, C. R., Lehrman, J., Rosenthal, J. P., McKerrow, J. H. \& Chibale, K. (2004). J. Med. Chem. 47, 3212-3219.
El-Sawaf, A. K., West, D. X., El-Bahanasawy, R. M. \& El-Saied, F. A. (1998). Transition Met. Chem. 23, 227-232.
Maichle, C., Catineiras, A., Carballo, R., Gebremedhin, H., Lockwood, M. A., Ooms, C. E., Romack, T. J. \& West, D. X. (1995). Transition Met. Chem. 20, 228-233.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

