Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jesús Valdés-Martínez,^a* Simón Hernández-Ortega,^a Douglas X. West,^b Ayman K. El-Sawaf,^b Ramadan M. El-Bahanasawy^c and Fathy A. El-Saied^c

^aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, Cd. México, DF, Mexico, ^bDepartment of Chemistry, Illinois State University, Normal, IL 61790-4160, USA, and ^cDepartment of Chemistry, El-Menoufia University, Shebin El-Kom, Egypt

Correspondence e-mail: jvaldes@servidor.unam.mx

Key indicators

Single-crystal X-ray study T = 291 K Mean σ (C–C) = 0.006 Å Disorder in solvent or counterion R factor = 0.043 wR factor = 0.109 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

mer-Bis(2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1*H*-pyrazole-4-carbaldehyde 4,4-dimethylthiosemicarbazonato- κ^3 *S*,*N*,*O*)cobalt(III) tetrafluoroborate

In the title compound, $[Co(C_{15}H_{18}N_5OS)_2]BF_4$, the cation has a distorted octahedral geometry around the Co^{III} atom, with two 2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1*H*-pyrazole-4carbaldehyde 4,4-dimethylthiosemicarbazonate anions coordinated as meridional tridentate ligands through the thiolate S, the antipyrine O and the imine N atoms. A tetrafluoroborate anion balances the charge of the Co^{III} complex. Received 7 July 2005 Accepted 13 July 2005 Online 20 July 2005

Comment

The continuing interest in the chemistry of thiosemicarbazones and their metal complexes is mainly due to their interesting coordination chemistry and significant biological activity (Doron *et al.*, 2004; Belicchi-Ferrari *et al.*, 2005). Similarly, antipyrine (2,3-dimethyl-1-phenylpyrazol-5one) and its derivatives possess a wide variety of biological activity. We have reported the preparation and characterization through elemental analysis, physical and spectral studies, of coordination compounds of Fe^{III}, Co^{II} and Co^{III} with 4-formylantipyrine N(4)-methyl-, N(4)-dimethy- and 3-piperidylthiosemicarbazones (El-Sawaf *et al.*, 1998). In this paper, we report the crystal structure of the Co^{III} complex, (I), with 2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1*H*-pyrazole-4carbaldehyde 4,4-dimethylthiosemicarbazone.

The structure of (I) is shown in Fig. 1 and selected bond lengths and angles are listed in Table 1. The geometry around the Co^{III} ion is distorted octahedral, with two thiosemicarbazonate ligands coordinated in a meridional fashion, acting as tridentate through the thiolate S, the antipyrine O and the imine N atoms. The phenyl rings in both ligands deviate from the mean plane of the remaining heavy atoms, by 70.6 (2)° for the C12–C17 ring and by 70.2 (2)° for the C27–C32 ring. The F atoms from the tetrafluoroborate anion are disordered over two positions, with occupancies of 0.53 (2) and 0.47 (2), respectively.

metal-organic papers

The cobalt complexes reported with the 2,3-dimethyl-5-oxo-1-phenyl-2.5-dihydro-1*H*-pyrazole-4-carbaldehyde 4.4-dimethylthiosemicarbazone ligand in our earlier paper (El-Sawaf et al., 1998) were high-spin octahedral Co^{II} complexes. The present result indicates that, during crystalization, the Co^{II} salt was oxidized to the Co^{III} salt, as has been reported to happen with thiosemicarbazone complexes of Co^{II} with poorly coordinating anions such as BF_{4}^{-} (Maichle *et al.*, 1995).

Experimental

The title compound was obtained as reported elsewhere (El-Sawaf et al., 1998).

 $D_x = 1.473 \text{ Mg m}^{-3}$

Cell parameters from 5009

 $0.36 \times 0.22 \times 0.18 \text{ mm}$

 $(\Delta/\sigma)_{\rm max} = 0.027$

 $\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.06P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

Mo $K\alpha$ radiation

reflections

 $\theta = 2.4 - 31.3^{\circ}$

 $\mu=0.67~\mathrm{mm}^{-1}$

T = 291 (2) K

Prism, black

Crystal data

[Co(C15H18N5OS)2]BF4 $M_r = 778.55$ Monoclinic, $P2_1/c$ a = 15.1182 (10) Åb = 14.0027 (9) Å c = 17.3551 (12) Å $\beta = 107.173 (2)^{\circ}$ V = 3510.2 (4) Å³ Z = 4

Data collection

Bruker SMART APEX AXS CCD	4433 reflections with $I > 2\sigma(I)$
area-detector diffractometer	$R_{\rm int} = 0.050$
ω scans	$\theta_{\rm max} = 25.0^{\circ}$
Absorption correction: none	$h = -17 \rightarrow 17$
28284 measured reflections	$k = -16 \rightarrow 16$
6188 independent reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.109$ S = 0.946188 reflections 456 parameters

Table 1

Selected geometric parameters (11,).	Selected	geometric	parameters ((A, °).
---------------------------------------	----------	-----------	--------------	-------	----

Co1-N8	1.921 (2)	O2-C18	1.259 (3)
Co1-N3	1.922 (2)	N3-C6	1.288 (3)
Co1-O1	1.9938 (19)	N3-N4	1.395 (3)
Co1-O2	1.995 (2)	N4-C7	1.299 (4)
Co1-S2	2.1934 (8)	N5-C7	1.365 (4)
Co1-S1	2.1937 (8)	N8-C21	1.291 (3)
S1-C7	1.750 (3)	N8-N9	1.391 (3)
S2-C22	1.746 (3)	N9-C22	1.306 (3)
O1-C3	1.258 (3)	N10-C22	1.357 (4)
N8-Co1-N3	174.52 (10)	N3-Co1-S1	86.43 (7)
N8-Co1-O1	86.20 (8)	O1-Co1-S1	174.77 (6)
N3-Co1-O1	97.44 (9)	O2-Co1-S1	91.05 (6)
N8-Co1-O2	97.60 (9)	S2-Co1-S1	92.17 (3)
N3-Co1-O2	86.80 (9)	C7-S1-Co1	95.47 (10)
O1-Co1-O2	85.66 (9)	C22-S2-Co1	95.72 (10)
N8-Co1-S2	86.36 (7)	C3-O1-Co1	117.76 (18)
N3-Co1-S2	89.43 (7)	C18-O2-Co1	118.03 (19)
O1-Co1-S2	91.40 (7)	O1-C3-N2	122.2 (3)
O2-Co1-S2	174.88 (6)	O1-C3-C4	131.1 (3)
N8-Co1-S1	90.21 (7)		

Figure 1

View of the molecule of (I). Displacement ellipsoids are drawn at the 50% probability level.

H atoms were located in a difference Fourier map and refined as riding $[C-H = 0.93 \text{ or } 0.96 \text{ Å}; U_{iso}(H) = 1.2U_{eq}(C)].$

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: enCIFer (Allen et al., 2004).

The authors acknowledge UNAM and CONACYT 40332-Q for partial support of this research.

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Belicchi-Ferrari, M., Bisceglie, F., Casoli, C., Durot, S., Morgenstern-Badarau. I., Pelosi, G., Pilotti, E., Pinelli, S. & Tarasconi, P. (2005). J. Med. Chem. 48, 1671-1675.
- Bruker (1999). SMART (Version 5.625) and SAINT-Plus (Version 6.23C). Bruker AXS Inc., Madison, Wisconsin, USA.
- Doron, C., Greenbaum, D., Mackey, Z., Hansell, E., Doyle, P., Gut, J., Caffrey, C. R., Lehrman, J., Rosenthal, J. P., McKerrow, J. H. & Chibale, K. (2004). J. Med. Chem. 47, 3212-3219.
- El-Sawaf, A. K., West, D. X., El-Bahanasawy, R. M. & El-Saied, F. A. (1998). Transition Met. Chem. 23, 227-232
- Maichle, C., Catineiras, A., Carballo, R., Gebremedhin, H., Lockwood, M. A., Ooms, C. E., Romack, T. J. & West, D. X. (1995). Transition Met. Chem. 20, 228-233
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.